Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Mol Carcinog ; 63(5): 859-873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353359

RESUMO

Breast cancer has become the most commonly diagnosed cancer. Heterogeneous nuclear ribonucleoprotein C (HNRNPC), a reader of N6-methyladenosine (m6A), has been observed to be upregulated in various types of cancer. Nevertheless, the role of HNRNPC in breast cancer and whether it is regulated by m6A modification deserve further investigation. The expression of HNRNPC in breast cancer was examined by quantitative real-time polymerase chain reaction and western blot analysis. RNA immunoprecipitation was performed to validate the binding relationships between HNRNPC and WD repeat domain 77 (WDR77). The effects of HNRNPC and m6A regulators on WDR77 were investigated by actinomycin D assay. The experiments in vivo were conducted in xenograft models. In this research, we found that HNRNPC was highly expressed in breast cancer, and played a crucial role in cell growth, especially in the luminal subtype. HNRNPC could combine and stabilize WDR77 mRNA. WDR77 successively drove the G1/S phase transition in the cell cycle and promoted cell proliferation. Notably, this regulation axis was closely tied to the m6A modification status of WDR77 mRNA. Overall, a critical regulatory mechanism was identified, as well as promising targets for potential treatment strategies for luminal breast cancer.


Assuntos
Neoplasias da Mama , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética , Adenosina
2.
Environ Toxicol ; 39(5): 2893-2907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299319

RESUMO

BACKGROUND: N6-Methyladenosine (m6A) RNA methylation modulators are implicated in nasopharyngeal carcinoma (NPC). Circular RNAs (circRNAs) stimulate/inhibit the development of NPC by sponging microRNAs (miRNAs). Herein, m6A modifications affecting the circRNA/miRNA axis in NPC were explored. METHODS: Twenty prognostic m6A RNA methylation regulators were identified from 504 head/neck squamous cell carcinoma and 44 normal samples from The Cancer Genome Atlas (TCGA). Differentially expressed miRNAs were screened from the TCGA and Gene Expression Omnibus (GEO) databases. RNA-binding protein (RBP)-circRNA and circRNA-miRNA interactive pairs were verified using RBPmap and RNAhybrid, respectively. The RBP/circRNA/miRNA network was constructed using Cytoscape. Furthermore, CircITCH (hsa_circ_00059948), HNRNPC, and miR-224-3p expressions were detected by western blotting and quantitative polymerase chain reaction. The role of circITCH in NPC was examined using apoptosis, scratch wound healing, transwell invasion, and cell counting kit-8 assays. Finally, CircITCH-miR-224-3p and circITCH-HNRNPC interactions were assessed by dual-luciferase reporter and RNA-immunoprecipitation (RIP) assays, respectively. RESULTS: Bioinformatics analysis revealed that high pathological grade, late-stage tumors, and low survival were associated with increased HNRNPC expression. MiR-224-3p was upregulated in NPC and sequestered by circITCH. Construction of the RBP/circRNA/miRNA network highlighted the HNRNPC/circITCH/miR-224-3p axis. In vitro experiments demonstrated decreased circITCH expression and increased HNRNPC and miR-224-3p expressions in NPC. In NPC cells overexpressing circITCH, HNRNPC and miR-224-3p expressions were significantly decreased. Dual-luciferase assays demonstrated a targeting relationship between circITCH and miR-224-3p, and RIP assays demonstrated interaction of HNRNPC targets with circITCH. CONCLUSION: CircITCH overexpression inhibited NPC progression by sequestering miR-224-3p, and HNRNPC reduced circITCH expression through direct interaction.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Regulação para Baixo/genética , Carcinoma Nasofaríngeo/genética , RNA Circular/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Luciferases , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética
3.
Dig Dis Sci ; 69(3): 811-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217675

RESUMO

Gastric cancer is a common malignant tumor, and due to its insidious onset and limited screening methods, most patients are diagnosed with advanced disease and have a poor prognosis. The circRNA in exosomes has an essential role in cancer diagnosis and treatment. However, the part of hsa_circ_0014606 within exosomes in gastric cancer progression is unclear. Firstly, we extracted exosomes from the serum of gastric cancer patients and healthy individuals by ultracentrifugation and analyzed the expression of hsa_circ_0014606 in both exosomes; then knocked down hsa_circ_0014606 in vivo and in vitro, respectively, to observe its effect on the physiological function of gastric cancer cells; finally, we used bioinformatics to screen hsa_circ_0014606 targeting miRNAs and mRNAs, and experiments were performed to verify the interrelationship between the three. The results showed that the level of hsa_circ_0014606 in the serum exosomes of gastric cancer patients was significantly higher than that of the healthy population. The knockdown of hsa_circ_0014606 slowed the proliferation of gastric cancer cells, significantly reduced migration and invasion ability, accelerated apoptosis, and reduced tumor size in mice. In addition, the expression of hsa_circ_0014606 was negatively correlated with the expression of miR-514b-3p and positively correlated with the expression of heterogeneous nuclear ribonucleoprotein C (HNRNPC). In conclusion, hsa_circ_0014606 exerted a pro-cancer effect indirectly through miR-514b-3p targeting gene HNRNPC, and this study provides a new potential target for treating gastric cancer.


Assuntos
Carcinoma , Exossomos , MicroRNAs , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/patologia
4.
Mol Cancer ; 23(1): 4, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184608

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS: High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS: In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS: Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Processamento Alternativo , RNA Circular/genética , MicroRNAs/genética , Neoplasias Renais/genética , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Citocromo P-450 CYP1B1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética
5.
Br J Pharmacol ; 181(5): 735-751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37782223

RESUMO

BACKGROUND AND PURPOSE: Peripheral nerve trauma-induced dysregulation of pain-associated genes in the primary sensory neurons of dorsal root ganglion (DRG) contributes to neuropathic pain genesis. RNA-binding proteins participate in gene transcription. We hypothesized that RALY, an RNA-binding protein, participated in nerve trauma-induced dysregulation of DRG pain-associated genes and nociceptive hypersensitivity. METHODS AND RESULTS: Immunohistochemistry staining showed that RALY was expressed exclusively in the nuclei of DRG neurons. Peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve produced time-dependent increases in the levels of Raly mRNA and RALY protein in injured DRG. Blocking this increase through DRG microinjection of adeno-associated virus 5 (AAV5)-expressing Raly shRNA reduced the CCI-induced elevation in the amount of eukaryotic initiation factor 4 gamma 2 (Eif4g2) mRNA and Eif4g2 protein in injured DRG and mitigated the development and maintenance of CCI-induced nociceptive hypersensitivity, without altering basal (acute) response to noxious stimuli and locomotor activity. Mimicking DRG increased RALY through DRG microinjection of AAV5 expressing Raly mRNA up-regulated the expression of Eif4g2 mRNA and Eif4g2 protein in the DRG and led to hypersensitive responses to noxious stimuli in the absence of nerve trauma. Mechanistically, CCI promoted the binding of RALY to the promoter of Eif4g2 gene and triggered its transcriptional activity. CONCLUSION AND IMPLICATIONS: Our findings indicate that RALY participates in nerve trauma-induced nociceptive hypersensitivity likely through transcriptionally triggering Eif4g2 expression in the DRG. RALY may be a potential target in neuropathic pain management.


Assuntos
Hiperalgesia , Neuralgia , Gânglios Espinais/metabolismo , Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Nociceptividade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo
6.
Cell Biol Toxicol ; 39(6): 3323-3340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906341

RESUMO

Human malignant gliomas are the most common and aggressive primary malignant tumors of the human central nervous system. Vasculogenic mimicry (VM), which refers to the formation of a tumor blood supply system independently of endothelial cells, contributes to the malignant progression of glioma. Therefore, VM is considered a potential target for glioma therapy. Accumulated evidence indicates that alterations in SUMOylation, a reversible post-translational modification, are involved in tumorigenesis and progression. In the present study, we found that UBA2 and RALY were upregulated in glioma tissues and cell lines. Downregulation of UBA2 and RALY inhibited the migration, invasion, and VM of glioma cells. RALY can be SUMOylated by conjugation with SUMO1, which is facilitated by the overexpression of UBA2. The SUMOylation of RALY increases its stability, which in turn increases its expression as well as its promoting effect on FOXD1 mRNA. The overexpression of FOXD1 promotes DKK1 transcription by activating its promoter, thereby promoting glioma cell migration, invasion, and VM. Remarkably, the combined knockdown of UBA2, RALY, and FOXD1 resulted in the smallest tumor volumes and the longest survivals of nude mice in vivo. UBA2/RALY/FOXD1/DKK1 axis may play crucial roles in regulating VM in glioma, which may contribute to the development of potential strategies for the treatment of gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Humanos , Neoplasias Encefálicas/metabolismo , Sumoilação , Camundongos Nus , Células Endoteliais/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Glioma/genética , Glioma/metabolismo , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Forkhead/genética
7.
Biomolecules ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37759731

RESUMO

FOXM1 is an oncogenic transcriptional factor and includes several isoforms generated by alternative splicing. Inclusion of alternative exon 9 produces FOXM1a, a transcriptionally inactive isoform. However, the role of FOXM1a in tumorigenesis remains unknown. In addition, the regulatory mechanisms of exon 9 splicing are also unclear. In the present study, we found that overexpression of FOXM1a significantly reduced cell proliferation and colony formation of oral squamous cell carcinoma (OSCC) cell proliferation in vitro. Importantly, OSCC cells with FOXM1a overexpression showed significantly slower tumor formation in nude mice. Moreover, we identified a U-rich exonic splicing suppressor (ESS) which is responsible for exon 9 skipping. Splicing factor heterogeneous nuclear ribonucleoprotein C (hnRNP C) can bind to the ESS and suppress exon 9 inclusion and FOXM1a expression. Silence of hnRNP C also significantly suppresses OSCC cell proliferation. HnRNP C is significantly co-expressed with FOXM1 in cancers. Our study uncovered a novel regulatory mechanism of oncogene FOXM1 expression in OSCC.


Assuntos
Proteína Forkhead Box M1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Camundongos , Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Camundongos Nus , Neoplasias Bucais/genética , Oncogenes , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo
8.
Am J Hum Genet ; 110(8): 1414-1435, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541189

RESUMO

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética
9.
Cancer Sci ; 114(9): 3608-3622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417427

RESUMO

Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , RNA Mensageiro/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Nucleares/genética
10.
Cell Rep ; 42(4): 112288, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952348

RESUMO

The tumor suppressor p53 plays a pivotal role in tumor prevention. The activity of p53 is mainly restrained by the ubiquitin E3 ligase Mdm2. However, it is not well understood how the Mdm2-p53 pathway is intricately regulated. Here we report that the RNA binding protein RALY functions as an oncogenic factor in lung cancer. RALY simultaneously binds to Mdm2 and the deubiquitinating enzyme USP7. Via these interactions, RALY not only stabilizes Mdm2 by stimulating the deubiquitinating activity of USP7 toward Mdm2 but also increases the trans-E3 ligase activity of Mdm2 toward p53. Consequently, RALY enhances Mdm2-mediated ubiquitination and degradation of p53. Functionally, RALY promotes lung tumorigenesis, at least partially, via negative regulation of p53. These findings suggest that RALY destabilizes p53 by modulating the function of Mdm2 at multiple levels. Our study also indicates a critical role for RALY in promoting lung tumorigenesis via p53 inhibition.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Humanos , Transformação Celular Neoplásica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Pulmão/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação
11.
J Cancer Res Clin Oncol ; 149(8): 4639-4651, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36175801

RESUMO

PURPOSE: Serum-derived extracellular vesicles (EVs) have been reported to play an important role in non-small cell lung cancer (NSCLC). The current study sought to explore the effect of serum-EVs delivering m6A methylation regulator heterogeneous nuclear ribonucleoprotein C (HNRNPC) on the development of NSCLC through the regulation of discs large-associated protein 5 (DLGAP5). METHODS: NSCLC-related RNA-Seq and clinical data were first obtained from the TCGA database to screen differentially expressed m6A-related regulators, which were intersected with the differential genes in NSCLC-related microarray GSE43458 obtained from the GEO database for survival analysis and clinical correlation analysis. Correlation between HNRNPC and DLGAP5 expression was evaluated. Serum-EVs were isolated and identified, and the uptake of EVs by A549 cells was visualized using fluorescence microscopy. In vivo xenograft tumor models and tumor metastasis models were constructed in nude mice to observe growth and metastasis of NSCLC cells. RESULTS: HNRNPC was associated with poor prognosis and metastasis of NSCLC, and further implicated in the regulation of DNA replication and cell cycle-related pathways. HNRNPC might promote the growth and metastasis of NSCLC by identifying m6A modification of DLGAP5 mRNA. Serum-EVs delivered HNRNPC to NSCLC cells in vitro. In vivo experimentation further confirmed that serum-EVs could deliver HNRNPC to promote the growth and metastasis of NSCLC cells in nude mice. CONCLUSIONS: Our findings highlight that serum-EVs can deliver HNRNPC to NSCLC cells, wherein HNRNPC recognizes the m6A modification of DLGAP5 mRNA, thus ultimately promoting NSCLC growth and metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Metilação , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Camundongos Nus , RNA Mensageiro/genética , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/metabolismo
12.
J Exp Clin Cancer Res ; 41(1): 335, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471363

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the world's third leading cause of cancer-related death; due to the fast growth and high prevalence of tumor recurrence, the prognosis of HCC patients remains dismal. Long non-coding RNA CEBPA-DT, a divergent transcript of the CCAAT Enhancer Binding Protein Alpha (CEBPA) gene, has been shown to participate in multiple tumor progression. However, no research has established its cancer-promoting mechanism in HCC yet. METHODS: CEBPA-DT was identified in human HCC tissues through RNA sequencing. The expression level of CEBPA-DT was assessed by quantitative real-time PCR. The biological effects of CEBPA-DT were evaluated in vitro and in vivo through gain or loss of function experiments. RNA fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays were applied to investigate the downstream target of CEBPA-DT. Immunofluorescence, subcellular protein fractionation, western blot, and co-immunoprecipitation were performed to analyze the subcellular location of ß-catenin and its interaction with Discoidin domain-containing receptor 2 (DDR2). RESULTS: CEBPA-DT was upregulated in human HCC tissues with postoperative distant metastasis and intimately related to the worse prognosis of HCC patients. Silencing of CEBPA-DT inhibited the growth, migration and invasion of hepatoma cells in vitro and in vivo, while enhancement of CEBPA-DT played a contrasting role. Mechanistic investigations demonstrated that CEBPA-DT could bind to heterogeneous nuclear ribonucleoprotein C (hnRNPC), which facilitated cytoplasmic translocation of hnRNPC, enhanced the interaction between hnRNPC and DDR2 mRNA, subsequently promoted the expression of DDR2. Meanwhile, CEBPA-DT induced epithelial-mesenchymal transition (EMT) process through upregulation of Snail1 via facilitating nuclear translocation of ß-catenin. Using DDR2 inhibitor, we revealed that the CEBPA-DT induced the interaction between DDR2 and ß-catenin, thus promoting the nuclear translocation of ß-catenin to activate transcription of Snail1, contributing to EMT and HCC metastasis. CONCLUSIONS: Our results suggested that CEBPA-DT promoted HCC metastasis through DDR2/ß-catenin mediated activation of Snail1 via interaction with hnRNPC, indicating that the CEBPA-DT-hnRNPC-DDR2/ß-catenin axis may be used as a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/secundário , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 40(6): 704-709, 2022 Dec 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36416324

RESUMO

OBJECTIVES: This work aimed to construct N6-methyladenosine (m6A) regulator-based prognostic signature and evaluate the prognostic value and the intervention on tumor immune microenvironment of this m6A risk signature. METHODS: Using transcriptome and clinical data of head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA), we profiled m6A regulators and constructed an m6A risk signature. The relationship between m6A modulation and immune function was studied by differential gene expression, cell type enrichment, and correlation analyses. RESULTS: Fifteen m6A regulators had aberrant expression in HNSCC. A three-gene m6A prognostic signature (i.e., YTHDC2, IGF2BP2, and HNRNPC) was constructed and identified as an independent prognostic indicator for HNSCC. The m6A regulator signature-based high-risk group revealed pro-tumoral immune microenvironment due to the dysregulation of immune-related gene expression, abnormal enrichment of multiple immunocytes, and production of immunoregulatory factors. CONCLUSIONS: This comprehensive analysis of m6A regulators and tumor immune landscape in HNSCC revealed that the m6A signature of YTHDC2, IGF2BP2, and HNRNPC could serve as a promising biomarker for monitoring HNSCC development and may be a potential target for tumor therapy in the future.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Microambiente Tumoral/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , RNA Helicases
14.
Cell Death Dis ; 13(8): 703, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963855

RESUMO

Oral squamous cell carcinoma (OSCC), the most common malignancy of the oral and maxillofacial region, severely affects human health. However, current treatments for OSCC commonly show only a ~60% 5-year survival rate of patients with distant metastases, indicating an urgent need for targeted treatments for patients with advanced metastases. Here, we report a survival-related long non-coding RNA, CYTOR, which is highly expressed in the lesions of oral cancer patients. We found that CYTOR can promote both migration and invasion in oral cancer cells as well as the epithelial-mesenchymal transition (EMT). RNA-sequencing of CYTOR-knockdown oral cancer cells revealed that CYTOR can regulate mitochondrial respiration and RNA splicing. Mechanistically, we found that nuclear-localized CYTOR interacts with HNRNPC, resulting in stabilization of ZEB1 mRNAs by inhibiting the nondegradative ubiquitination of HNRNPC. By synthesizing CYTOR-targeting small interfering RNAs (siRNAs) encapsulated in Nanoscale Metal Organic Frameworks (NMOFs), we demonstrate the targeted suppression of CYTOR to inhibit invasion and metastasis of oral cancer cells in a nude mouse model. Cumulatively, this study reveals the potential role of the CYTOR-HNRNPC-ZEB1 axis in regulating mitochondrial metabolism and glycolysis of oral cancer cells, and illustrates the effective use of lncRNA targeting in anti-metastatic cancer therapies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , RNA Longo não Codificante , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Neoplasias de Cabeça e Pescoço/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Humanos , Camundongos , Neoplasias Bucais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/metabolismo , Respiração , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
15.
Genes Immun ; 23(8): 246-254, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35941292

RESUMO

RALY is a multifunctional RNA-binding protein involved in cancer metastasis, prognosis, and chemotherapy resistance in various cancers. However, the molecular mechanism of which is still unclear. We have established RALY overexpression cell lines and studied the effect of RALY on proliferation and apoptosis in HeLa cells. Then we used RNA-seq to analyze the transcriptomes data. Lastly, RT-qPCR experiments had performed to confirm the RNA-seq results. We found that the overexpression of RALY in HeLa cells inhibited proliferation. Moreover, the overexpression of RALY changed the gene expression profile, and the significant upregulation of genes involved immune/inflammatory response related biological process by NOD-like receptor signaling pathway cytokine-cytokine receptor interaction. The significant downregulation genes involved innate immune response by the Primary immunodeficiency pathway. Notably, IFIT1, IFIT2, IFTI3, IFI44, HERC4, and OASL expression had inhibited by the overexpression of RALY. Furthermore, RALY negatively regulates the expression of transcription factors FOS and FOSB. Notably, we found that 645 alternative splicing events had regulated by overexpression of RALY, which is highly enriched in transcription regulation, RNA splicing, and cell proliferation biological process by the metabolic pathway. We show that RALY regulates the expression of immune/inflammatory response-related genes via alternative splicing of FOS in HeLa cells. The novel role of RALY in regulating immune/inflammatory gene expression may explain its function in regulating chemotherapy resistance and provides novel insights into further exploring the molecular mechanism of RALY in regulating cancer immunity and chemo/immune therapies.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Células HeLa , Proliferação de Células , Transcriptoma
16.
J Environ Pathol Toxicol Oncol ; 41(3): 77-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993957

RESUMO

Although some evidence has validated the connection between heterogeneous nuclear ribonucleoprotein C (HNRNPC) and the progression of tumors, a pan-cancer investigation is still required. Thus, we explored the oncogenic effect of HNRNPC across many tumors using The Cancer Genome Atlas datasets. Moreover, short hairpin RNAs (shRNAs) were found to repress HNRNPC in lung adenocarcinoma (LUAD) cells, and the effect on LUAD cells proliferation and metastasis was examined using a Cell Counting Kit-8, transwell, and invasion test. HNRNPC was found to be overexpressed in most cancers, and a divergent relationship was observed between the abnormal levels of HNRNPC and tumor prognosis. HNRNPC level was observed to correlate with the cancer-associated fibroblast infiltration, such as lung cancer. Furthermore, higher HNRNPC levels were found in LUAD tissues and cells. Subsequently, Kaplan-Meier analysis revealed that the increased HNRNPC level was connected with worse overall survival and disease-free survival in LUAD patients. Moreover, HNRNPC silencing reduced the progression of A549 and H1299 cells, including proliferation, migration, and invasion. This is the first pan-cancer investigation that presents a relatively systematic finding of the oncogenic effect of HNRNPC among many cancer types. Our data indicate that HNRNPC facilitates the biological processes of LUAD cells; nevertheless, further research on the mechanism underlying the role of HNRNPC in LUAD development is warranted.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Neoplasias Pulmonares/patologia
17.
Cancer Sci ; 113(10): 3347-3361, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35848884

RESUMO

RNA-binding protein (RBP) dysregulation is functionally linked to several human diseases, including neurological disorders, cardiovascular disease, and cancer. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RBPs involved in nucleic acid metabolism. A growing body of studies has shown that the dysregulated hnRNPs play important roles in tumorigenesis. Here, we found that heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRNPC) had good performance in distinguishing between hepatocellular carcinoma (HCC) and normal liver tissues through bioinformatics analysis. Further investigation revealed that HNRNPC was significantly correlated with multiple malignant characteristics of HCC, including tumor size, microvascular invasion, tumor differentiation, and TNM stage. Patients with HCC with positive HNRNPC expression exhibited decreased overall survival and increased recurrence rate. HNRNPC downregulation inhibited HCC invasion and metastasis. The decreased expression of hypoxia inducible factor 1 subunit alpha (HIF1A) was identified as the molecular mechanism underlying HNRNPC downregulation-inhibited HCC metastasis by RNA sequencing. Mechanistically, HNRNPC downregulation decreased HIF1A expression by destabilizing HIF1A mRNA. HIF1A overexpression rescued the decrease in invasiveness and metastasis of HCC induced by HNRNPC downregulation. Additionally, interleukin (IL)-6/STAT3 signaling upregulated HNRNPC expression in HCC cells, and knockdown of HNRNPC significantly inhibited IL-6/STAT3-enhanced HCC metastasis. Furthermore, anti-IL-6 antibody siltuximab significantly inhibited IL-6-mediated HCC metastasis. In summary, our research revealed the clinical value, functional role, and molecular mechanism of HNRNPC in HCC and showed the potential of HNRNPC as a biomarker for diagnosis, prognosis, and further therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-6/metabolismo , Neoplasias Hepáticas/patologia , Metástase Neoplásica , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Fator de Transcrição STAT3/metabolismo
18.
Exp Mol Med ; 54(6): 812-824, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729324

RESUMO

MicroRNA (miRNA) processing is a critical step in mature miRNA production. Its dysregulation leads to an increase in miRNA isoforms with heterogenous 5'-ends (isomiRs), which can recognize distinct target sites because of their shifted seed sequence. Although some miRNA genes display productive expression of their 5'-isomiRs in cancers, how their production is controlled and how 5'-isomiRs affect tumor progression have yet to be explored. In this study, based on integrative analyses of high-throughput sequencing data produced by our group and publicly available data, we demonstrate that primary miR-21 (pri-miR-21) is processed into the cancer-specific isomiR isomiR-21-5p | ±1, which suppresses growth hormone receptor (GHR) in liver cancer. Treatment with antagomirs against isomiR-21-5p | ±1 inhibited the in vitro tumorigenesis of liver cancer cells and allowed the recovery of GHR, whereas the introduction of isomiR-21-5p | ±1 mimics attenuated these effects. These effects were validated in a mouse model of spontaneous liver cancer. Heterogeneous nuclear ribonucleoprotein C and U2 small nuclear RNA auxiliary factor 2 were predicted to bind upstream of pre-miR-21 via a poly-(U) motif and influence Drosha processing to induce the production of isomiR-21-5p | ±1. Our findings suggest an oncogenic function for the non-canonical isomiR-21-5p | ±1 in liver cancer, and its production was shown to be regulated by hnRNPC.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo C , MicroRNAs , Animais , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Isoformas de Proteínas , Processamento Pós-Transcricional do RNA
19.
Cancer Lett ; 538: 215711, 2022 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-35490918

RESUMO

Alternative splicing is an important RNA processing event that contributes to RNA complexity and protein diversity in cancer. Accumulating evidence demonstrates the essential roles of some alternatively spliced genes in carcinogenesis. However, the potential roles of alternatively spliced genes in hepatocellular carcinoma (HCC) are still largely unknown. Here we showed that the HnRNP Associated with Lethal Yellow Protein Homolog (RALY) gene is upregulated and associated with poor outcomes in HCC patients. RALY acts as a tumor-promoting factor by cooperating with splicing factor 3b subunit 3 (SF3B3) and modulating the splicing switch of Metastasis Associated 1 (MTA1) from MTA-S to MTA1-L. Normally, MTA1-S inhibits cell proliferation by reducing the transcription of cholesterol synthesis genes. In HCC, RALY and SF3B3 cooperate to regulate the MTA1 splicing switch, leading to a reduction in the MTA1-S level, and alleviating the inhibitory effect of MTA1-S on cholesterol synthesis genes, thus promoting HCC cell proliferation. In conclusion, our results revealed that the RALY-SF3B3/MTA1/cholesterol synthesis pathway contributes essentially to hepatic carcinogenesis and could serve as a promising therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Processamento Alternativo , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Colesterol/biossíntese , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo
20.
Commun Biol ; 5(1): 386, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449187

RESUMO

Actinic keratosis (AK) is a common precancerous cutaneous neoplasm that arises on chronically sun-exposed skin. AK susceptibility has a moderate genetic component, and although a few susceptibility loci have been identified, including IRF4, TYR, and MC1R, additional loci have yet to be discovered. We conducted a genome-wide association study of AK in non-Hispanic white participants of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (n = 63,110, discovery cohort), with validation in the Mass-General Brigham (MGB) Biobank cohort (n = 29,130). We identified eleven loci (P < 5 × 10-8), including seven novel loci, of which four novel loci were validated. In a meta-analysis (GERA + MGB), one additional novel locus, TRPS1, was identified. Genes within the identified loci are implicated in pigmentation (SLC45A2, IRF4, BNC2, TYR, DEF8, RALY, HERC2, and TRPS1), immune regulation (FOXP1 and HLA-DQA1), and cell signaling and tissue remodeling (MMP24) pathways. Our findings provide novel insight into the genetics and pathogenesis of AK susceptibility.


Assuntos
Ceratose Actínica , Neoplasias Cutâneas , Adulto , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Humanos , Ceratose Actínica/genética , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Neoplasias Cutâneas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...